МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой ядерной физики

Скадменский С.Г./ 30.05.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.О.36 Медицинская электроника

1. Код и наименование специальности:

30.50.02 Медицинская биофизика

- 2. Специализация:
- 3. Квалификация выпускника: врач-биофизик
- 4. Форма обучения: очная
- 5. Кафедра, отвечающая за реализацию дисциплины:

кафедра ядерной физики

6. Составители программы:

старший преподаватель Сабуров Анатолий Николаевич, к.ф.-м.н. доцент Долгополов Михаил Анатольевич

7. Рекомендована:

<u>научно-методическим советом медико-биологического факультета протокол № 3 от</u> <u>22.04.2024</u>

9. Цели и задачи учебной дисциплины

Целями освоения учебной дисциплины являются:

- получение необходимых теоретических сведений о принципах построения современной электронной медицинской аппаратуры, схемотехнических решениях применяемых для функционального преобразования сигналов в современных устройствах съема медико-биологической информации, применяемых при постановке медико-биологического эксперимента. Задачи учебной дисциплины:
- количественноикачественноописыватьсвязисвойствбиосистемы (медикобиологическогопоказателя) сизмеряемым физическим параметром; усвоить алгоритм проведения изм ерений.
- овладение знаниями и практическими навыками в области элементной базы современной аналоговой и цифровой электроники и схемотехнике электронных устройств, применяемой в медицинской аппаратуре и измерительных преобразователях физиологических параметров.

10. Место учебной дисциплины в структуре ООП:

Дисциплина Б1.О.36 является обязательной частью блока Б1. Требования к входным знаниям, умениям и навыкам: знание основ математики, информатики, физики. Дисциплина основывается на знаниях, умениях и навыках обучающихся, полученных при изучении дисциплин таких как:

- Математический анализ,
- Информатика, медицинская информатика,
- Механика и электричество,

Освоение дисциплины является предшествующей для производственной ипреддипломной практики.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ОПК-3	Способен использовать специализирован ное диагностическое и лечебное оборудование, применять медицинские изделия, лекарственные средства, клеточные продукты и генно-инженерные технологии, предусмотренны е порядками оказания медицинской помощи	ОПК-3.1	Оказывает медицинскую помощь с использованием специализированно го диагностического и лечебного оборудования, медицинских изделий, предусмотренных для использования в профессиональной сфере	Знать:- общие вопросы получения медико- биологической информации и измерения физических величин с помощью электроники; -основы современной схемотехники, применяемой в электронной медицинской аппаратуре и устройствах автоматизации медико-биологического эксперимента; - типовуюреализациюиназначениефункциональ ныхузловаппаратурымедицинскогоназначения Уметь:- пользоваться измерительной аппаратурой, правильно оценивать амплитудно-временные и энергетические параметры электрических сигналов; -моделировать электронные схемы на ЭВМ и объяснять результаты моделирования, - выполнять требуемое функциональное преобразователей физиологических параметров посредством схемных решений на операционных усилителях и цифровой электронике; Владеть: - практическими навыками выбора схемотехнических решений и расчета параметров и режимов работы элементов схемы для решения конкретных задач

12. Объем дисциплины в зачетных единицах/час. - 2/72.

Форма промежуточной аттестации - зачет

13. Трудоемкость по видам учебной работы

			Трудоемкость
Вид уче	ебной работы	Всего	По семестрам
			Семестр С
Аудиторные занят	ия	50	50
	лекции	22	22
D TOM INACEO:	лекции практические лабораторные ГК		
в том числе:	лабораторные	22	22
	ГК	6	6
Самостоятельная	работа	22	22
Форма промежуто	чной аттестации		Зачет
	Итого:	72	72

13.1. Содержание дисциплины

№п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК*
		1. Лекции	
1.1	Электрофизиологические методы исследования биообъекта.Биомедицинск иесигналы.	Предмет медицинской электроники. Электрофизиологические методы исследования функционального состояния биообъекта (биофизические принципы). Основные характеристики свойств и параметров излучений и физических полей биообъекта.	
		Физиологические показатели.	
1.2	Измерительно- диагностическая и терапевтическая система для измерения физиологических показателей и терапии	Биомедицинские сигналы (БС). Обобщенная структурная схема измерительнодиагностической и терапевтической системы. Краткая характеристика функций, требований и свойств отдельных компонент системы. Особенности получения, обработки и интерпретации биомедицинских сигналов. Датчики медико-биологической информации. Электроды для съема медико-биологической информации. Природа и источники артефактов и помех при измерении, практические пути их исключения или ослабления.	
1.3	Измерения электрических величин и сигналов	Измерение электрических величин, сигналов и основных параметров элементов в электрических цепях и электронных схемах	
1.4	Аналоговые методы и устройства обработки биомедицинскихсигналов.	Аналоговые методы и средства обработки биомедицинскихсигналов Активные фильтры. Линейные инелинейныесхемыобработкибиомедицинскихсигна лов (дифференциатор, интегратор, логарифмический усилитель и.т.д.) Измерительные усилители. Основные характеристики.	

1.5	Цифровые методы и	Цифровые методы и средства обработки	
1.0	устройства обработки	биомедицинских сигналов.	
	биомедицинских сигналов.	Элементы алгебры логики. Синтез логических	
	Chamadalla in low in the low.	устройств.	
		Базовые логические элементы.	
		Устройства комбинационной логики	
		(триггеры, счетчики, генераторы, компараторы).	
		Преобразователи кодов	
1.6	Аналого-цифровая	Аналогово-цифровые (АЦП) преобразователи.	
1	электроника в	Основные характеристики	
	медицинской аппаратуре	Цифро-аналоговые (ЦАП) преобразователи.	
		Основные характеристики.	
	1	2. Лабораторные занятия	
3.1	Иоморония опоктриноских	Измерение электрических величин, сигналов и	
	Измерения электрических	основных параметров элементов в электрических	
	величин и сигналов	цепях и электронных схемах	
3.2		Исследование характеристик полупроводниковых	
		приборов	
	Аналоговые методы и	Транзисторные усилители.	
	устройства обработки	Электронные устройства на операционных	
	биомедицинскихсигналов.	усилителях	
		Генераторы сигналов на операционных усилителях	
		Активные фильтры на операционных усилителях	
3.3		Логические элементы и схемы	
		Исследование цифровых устройств	
	Цифровые методы и	последовательного типа (триггеры, регистры,	
	устройства	счетчики)	
	обработкибиомедицинских	Исследование преобразователей кодов	
	сигналов	(дешифратор, шифратор, демультиплексор и	
1		мультиплексор).	
<u> </u>		Исследование цифрового компаратора	
3.4	Аналого-цифровая	Исследование интегрального цифро-аналогового	
	электроника в	преобразователя	
	медицинской аппаратуре	Исследование интегрального 8-разрядного	
	1 75-	аналого-цифрового преобразователя.	

13.2. Темы (разделы) дисциплины и виды занятий

			E	Виды занятий (к	оличество час	ов)	
№ п/п	Наименование темы (раздела) дисциплины	Лекции	Практиче ские	Лабораторн ые	ГК	Самостоят ельная работа	Всего
1	Электрофизиологически е методы исследования биообъекта. Биомедицинские сигналы (БС)	3			1	2	6
2	Измерительно- диагностическая и терапевтическая система для измерения физиологических показателей и терапии.	2			1	2	5
3	Измерения электрических величин и сигналов	2		2	1	2	7
4	Аналоговые методы и устройства обработки биомедицинскихсигнало в	6		8	1	6	21
5	Цифровые методы и устройства обработкибиомедицинск	6		8	1	6	21

	ихсигналов.					
	Аналого-цифровая					
6	электроника в	3	4	1	4	12
	медицинской				·	
	аппаратуре					
	Итого:	22	22	6	22	72

14. Методические указания для обучающихся по освоению дисциплины:

Изложение материала преподавателем необходимо вести в форме, доступной для понимания. Для улучшения усвоения учебного материала необходимо применять традиционные и современные технические средства обучения. Для самостоятельного изучения выбираются разделы дисциплины, усвоение которых необходимо для выполнения практических занятий.

Студентам на лекциях необходимо вести подробный конспект и стараться понять материал дисциплины, не стесняться задавать преподавателю вопросы для углубленного понимания конкретных проблем. Для полного понимания материала следует активно использовать консультации и практические занятия. Для самостоятельного изучения разделов дисциплины, рекомендованных преподавателем, необходимо иметь учебники из списка основной или дополнительной литературы.

При подготовке к лабораторным занятиям обучающийся может, используя рабочую программу дисциплины, уяснить тему предстоящего занятия. Занятия выполняются при последовательном изучении тем дисциплины и представляют собой выполнение практических задач предметной области с целью выработки у обучающихся навыков решения. Перед проведением занятия преподаватель информирует обучающихся о теме занятия, методиках будущих расчетов, сообщает о целях, задачах, порядке проведения и критериях оценки результатов работы.

В зависимости от готовности обучающихся к лабораторному занятию преподаватель может объяснить ход решения типовой задачи. Далее обучающиеся получают задание и время на их выполнение. После выполнения заданий преподаватель оценивает правильность их решения, разбирает ошибки, допущенные в ходе решения, в случае их возникновения.

Самостоятельная работа является обязательной для каждого обучающегося, ее объем определяется данной рабочей программой дисциплины. Главная задача самостоятельной работы – развитие самостоятельности, ответственности, творческого подхода к решению проблем учебного и профессионального уровня. В ходе аудиторной самостоятельной работы обучающиеся участвуют в подготовке к практическим занятиям, участвуют в обсуждении задач, выполняют задания практического занятия. Внеаудиторная самостоятельная работа включает изучение справочной литературы, учебной основной и дополнительной литературы, подготовку к собеседованию и составление отчета по лабораторному занятию.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

	Источник
1	Калакутский, Л. И. Аппаратура и методы клинического мониторинга: Учебное пособие [Текст] /
I	Л. И. Калакутский, Э. С. Манелис. – Самара: СГАУ, 1999 – 160 с.
2	Рангайян, Р. М. Анализ биомедицинских сигналов. Практический подход [Текст] / Пер. с англ.
	Под ред. А. П. Немирко – М.: Физматлит, 2007. – 440с.
2	Гусев, В. Г. Получение информации о параметрах и характеристиках организма и физические
3	методы воздействия на него [Текст] / В. Г. Гусев – М: Машиностроение, 2004. – 597 с.
4	Илясов Л.В. Биомедицинская измерительная техника: Учеб.пособие для вузов/JI.В. Илясов. —
4	М.: Высш. шк., 2007. — 342 с.: ил.
5	Титце У. Полупроводниковая схемотехника, в 2-х томах : 12-е изд. / У.Титце, К. Шенк – «Додека-
5	XXI», 2008 – т.1- 832с., т.2 – 944с., ил., схемы.

б) дополнительная литература:

Nº	п/п	Источник
6	Ö	Справочникпо функциональной диагностике. Под общей редакцией академика АМН СССР проф. Л. Д. Кассирского Издательство «МЕДИЦИНА» Москва: — 1970. — 823 с.
7	7	Федотов А.А., Акулов С.А. Измерительные преобразователи биомедицинских сигналов систем клинического мониторинга. – М.: Радио и связь, 2013. – 250 с. – ISBN 978-5-89776-016-9

8	Кузовкин В.А. Схемотехническое моделирование электрических устройств в Multisim: : Учебное пособие/ В.А. Кузовкин, В.В. Филатов. – 2016. – 336 с.
9	Хернитер Марк E. Multisim ® 7: Современная система компьютерного моделирования и анализа схем электронных устройств. (Пер. с англ.) / Пер. с англ. Осипов А.И . – М .: Издательский дом ДМК пресс, 2006. – 488 с.: ил.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

		······································
№г	1/П	Pecypc
10)	www.lib.vsu.ru https://lib.vsu.ru/elib/texts/method/vsu/nov06109.pdf

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Медицинская электроника. Часть 1. Учебное пособие Сабуров А.Н., Долгополов М.А., Данилов И.А. – ВГУ. 2020. – 46 с.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

При проведении занятий по дисциплине используются следующие образовательные технологии:

- активные и интерактивные формы проведения занятий;
- компьютерные технологии при проведении занятий:
- презентационные материалы и технологии при объяснении материала на лабораторных занятиях;
- специализированное программное обеспечение при проведении практических занятий;
- разбор конкретных ситуаций при постановке целей и задач кразработке прикладных программ, при выборепрограммного обеспечения по установленнымкритериям, при разработке программ по предусмотренным алгоритмам и методам.

Для самостоятельной работы используется ЭБС Университетская библиотека online,www.lib.vsu.ru -3HБ ВГУ

18. Материально-техническое обеспечение дисциплины:

Компьютерный класс (для проведения	Специализированная мебель, компьютеры
лекционных илабораторныхзанятий,	Pentium-II, III (8 шт.), объединенные в локальную
текущего контроля и промежуточной	сеть с возможностью подключения к сети
аттестации), ауд. 506 П	«Интернет»
Компьютерный класс, аудитория для	Специализированная мебель, компьютеры
групповых и индивидуальных консультаций,	(системные блоки IntelPentium-IV, мониторы LG
помещение для самостоятельной работы	FLATRON L17428-8F) (30 шт.) с возможностью
(г.Воронеж, площадь Университетская, д.1,	подключения к сети «Интернет» и обеспечением
пом.І, ауд. 40/5)	доступа в электронную информационно-
	образовательную среду университета

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетенция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Электрофизиологическ ие методы исследования биообъекта. Биомедицинские сигналы	ОПК-3: Способен использовать специализированно е диагностическое и лечебное	ОПК-3.1Оказывает медицинскую помощь с использованием специализированного диагностического и	устный опрос
2.	Измерительно- диагностическая и	оборудование, применять	лечебного оборудования,	

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетенция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
	терапевтическая система для измерения физиологических показателей и терапии	медицинские изделия, лекарственные средства, клеточные продукты и генно-	медицинских изделий, предусмотренных для использования в профессиональной сфере	
3.	Измерения электрических величин и сигналов	инженерные технологии, предусмотренные порядками		
4.	Аналоговые методы и устройства обработкибиомедицин скихсигналов	оказания медицинской помощи		отчет по лабораторным
5.	Цифровые методы и устройства обработки биомедицинскихсигнал ов.			занятиям
6.	Аналого-цифровая электроника в медицинской аппаратуре			
	•	ежуточная аттестация рма контроля –зачет	I	Перечень вопросовк зачету, КИМ

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: отчет по лабораторным занятиям

Перечень лабораторных занятий:

- 1.Измерение электрических величин, сигналов и основных параметров элементов в электрических цепях и электронных схемах.
- 2. Исследование характеристик полупроводниковых приборов.
- 3.Транзисторные усилители.
- 4.Электронные устройства на операционных усилителях
- 5. Генераторы сигналов на операционных усилителях
- 6. Активные фильтры на операционных усилителях
- 7. Логические элементы и схемы
- 8.Исследование цифровых устройств последовательного типа (триггеры, регистры, счетчики)
- 9.Исследование преобразователей кодов (дешифратор, шифратор, демультиплексор мультиплексор).
- 10. Исследование цифрового компаратора
- 11. Исследование интегрального цифро-аналогового преобразователя
- 12. Исследование интегрального 8-раз рядного аналого-цифрового преобразователя.

Требования к оформлению отчета:

Результаты расчетного задания и заданий на эксперимент заносятся в отчет, состоящий из титульного листа (на котором указывается наименование кафедры, название и цель работы, фамилия студента и номер группы), чертежей схем электрических цепей и устройств, таблиц для занесения результатов измерений и выполненных расчетов, осциллограммы и характеристики исследуемых электронных устройств, перечень использованных в работе приборов и выводы по работе.

Описание технологии проведения

Выполненная в полном объёме работа защищается. На защите особое внимание уделяется соответствию рассчитанных и экспериментально полученных данных и объяснению их возможных расхождений. Перед защитой работы необходимо ответить на вопросы тестовых заданий. Тестовые задания 1.Измерение электрических величин, сигналов и основных параметров элементов в электрических цепях и электронных схемах **1**. Укажите, чему равен **период**T колебания ЭДС источника синусоидального напряжения e= $\sqrt{2} \cdot 220 \sin 314t$ B? 2 c 0.04 c 0.08 c 1 c 0.01 c 0.02 c

- 2. Укажите, как изменится индуктивность катушки, если увеличить частоту синусоидального напряжения в 4 раза?
 - О Величина индуктивности не изменится
 - О Индуктивность катушки уменьшится в два раза

Индупивность катушки увеличится в 4 раза

- О Индуктивность катушки уменьшится в 4 раза
- **3**. Укажите, чему равен **угол** φ в последовательной *RL*-цепи, если известны значения синусоидального напряжения U=10 В, тока I=1 А и мощности P=8 Вт?

90°

4. Конденсатор с ёмкостью C = 1/6280 Ф установлен в цепи синусоидального тока с напряжением $u = \sqrt{2 \cdot 220 \sin(2\pi \cdot 1000t + \pi/6)}$ В. Укажите, чему равно **сопротивление** конденсатора?

> 0.22 Ом 0.44 Ом 2 Ом 1 Ом

5. Укажите, чему равен временной интервал, соответствующий углу сдвига фаз, равного 45°, при частоте исследуемых периодических сигналов, равной 100 Гц?

> 5 мс 1 мс 1.25 MC 1.5 MC

- 2.Исследование характеристик полупроводниковых приборов
- 1. Укажите, какой формулой описывается ВАХ *р-п*-перехода?

$$U = RI I = GU I = I_0 (e^{U/\varphi_T} - 1) I = \alpha U^{3/2}$$

 $(\varphi_T \approx 25 \text{ мB} - \text{температурный потенциал электрона при температуре } t = 20 °C)$

- 2. Назовите типы пробоевр-п-перехода и дайте их краткую характеристику.
- 3. Укажите, какой участок ВАХ стабилитрона является рабочим?

Прямой Обратный Вся ВАХ Участок с отрицательным дифференциальным сопротивлением

4. Известны параметры стабилитрона: $U_{cm.ном}$ = 30 В; $I_{cm.min}$ = 10 мА; $I_{cm.max}$ = = 50 mA; $I_{cm.Hom}$ = $(I_{cm,max} + I_{cm,min})/2 = (50 + 10)/2 = 30$ мА. Укажите, чему равно динамическое сопротивление стабилитрона в окрестности рабочей точки (считая рабочий участок ВАХ стабилитрона линейным), если напряжение на стабилитроне на рабочем участке не должно изменяться более 0,1 %?

> 0,5 Ом 0,75 Ом 1,0 Ом 1,25 Ом

5. Для параметрического стабилизатора справедливо соотношение

$$\Delta U_{cm} / \Delta U_{ex} = R_{cm.\partial uH} / (R_{\delta} + R_{cm.\partial uH}).$$

Откуда следует, что сопротивление балластного резистора

$$R_{\mathcal{O}} = (\Delta U_{\mathit{ex}} / \Delta U_{\mathit{cm}} - 1) R_{\mathit{cm}.\partial\mathit{uh}}.$$

Укажите, чему равно сопротивлениебалластного резистора в схеме стабилизации напряжения, если напряжение на её входе $U_{\rm ex}$, равное 60 В, изменяется на ± 10 %, а изменение напряжения на стабилитроне не превышает ± 0.1 %? Номинальное напряжение стабилитрона $U_{cm,hom}$ = 30 В, а его динамическое сопротивлении $R_{cm,\partial uH}$ = 1 Ом.

≈200 Ом 300 Ом ≈500 Ом 750 Ом ≈1.0 кОм

6. Укажите **соотношение** между статическим $R_{cm.cmam}$ и динамическим $R_{cm.duh}$ сопротивлениями на рабочем участке ВАХ типовых кремниевых стабилитронов.

 $R_{cm.cmam} = R_{cm.\partial uH} R_{cm.cmam} < R_{cm.\partial uH} R_{cm.cmam} > R_{cm.\partial uH}$

7. Укажите, чему равен временной интервал, соответствующий задержке управляющего импульса тиристора на 45°, при частоте анодного напряжения, равной 50 Гц?
1 мс 1,25 мс 1,5 мс 2,5 мс 4 мс 5 мс 8 . Укажите, как называют в отечественной литературе тиристор, пропускающий ток при положительной и отрицательной полуволнах анодного напряжения?
ДинисторДиакТринисторТриакСимистор
9 . Укажите, возможно ли после отпирания тиристора и положительном напряжении на его аноде прервать протекание анодного тока посредством изменения полярности управляющего импульса?
Да Возможно только во всех типах тиристоров Невозможно в специальных типах тиристоров
10. Назовите режимы работы биполярного транзистора и дайте их краткую характеристику.
11 . Укажите, какой формулой описывается коэффициент передачи по току h_{219} биполярного транзистора?
$h_{21\Im} = \Delta U_{K\Im} / \Delta I_K \Big _{I_B = cons} h_{21\Im} = (\alpha - 1) / \alpha h_{21\Im} = \Delta I_K / \Delta I_{\Im} h_{21\Im} = \Delta I_K / \Delta I_{\varpi} \Big _{U_{K\Im} = cons}$
12. Укажите, в какой схеме включения биполярного транзистора: а) максимальное входное сопротивление: в схеме с ОЭ в схеме с ОБ в схеме с ОК б) максимальный коэффициент усиления по мощности: в схеме с ОЭ в схеме с ОБ в схеме с ОК?
13 . Укажите порядок входного сопротивления полевых транзисторов, включенных по схеме с ОИ: ○ Десятки-сотни ом; ○ Десятки-сотни килом; ○ Десятки-сотни мег <i>аом</i> .
14. Укажите возможную максимальную частоту преобразования сигналов в устройствах на базе полевого транзистора: а) с управляющимр-п-переходом: 500 МГц; 12 ГГц; 810 ГГц; 1218 ГГц; б) с изолированным затвором: 500 МГц; 12 ГГц; 810 ГГц; 1218 ГГц
15 . Укажите номер стоко-затворной характеристики <i>п</i> -канального полевого транзистора:
а) 1 2 3 б) <i>с управляющимр-п-переходом</i> : 1 2 3 в) со встроенным каналом: 1 2 3 в) со встроенным каналом: 1 2 3 и 6). Каков физический смысл <i>h</i> -параметров и при каких условиях их определяют?
 17 Укажите, какая схема включения биполярного транзистора наиболее распространена? Схема с ОЭ Схема с ОК Схема с ОБ 18. Укажите, какие основные носителизарядов в полевом транзисторе: а) с п-каналом: электроны; дырки; электроны и дырки; б) с р-каналом: электроны; дырки; электроны и дырки.
19. Укажите, какими преимуществами обладают полевые транзисторы по сравнению обларными?
 Малой инерционностью, обусловленной только процессами перезарядки его входной и выходной ёмкостей. В полевых транзисторах отсутствуют процессы накапливания и рассасывания объёмного заряда неосновных носителей, оказывающих заметное влияние на быстродействие биполярных транзисторов. □ Пониженным выходным сопротивлением. □ Высоким входным сопротивлением по постоянному току и высокой технологичностью.
□ Большим падением напряжения <i>U_{си}</i> при коммутациях малых сигналов.

 □ Большей температурной стабильностью его характеристик. □ Пренебрежительно малым входным током, независящим от напряжения между затвором и истоком.
3.Транзисторные усилители. 1. Укажите тип усилителя, у которого коэффициент усиления по напряжению меньше единицы.
2 . Укажите выражение коэффициента усиления по напряжению транзисторного усилителя в схеме с ОЭ. $K_u \approx \frac{h_{21}R_K}{h_{11}(1+h_{22}R_K)} K_u \approx \frac{h_{21}}{h_{11}}R_K K_u \approx \frac{(1+h_{21})R_{3}}{h_{11}+(1+h_{21})R_{3}} \bigcirc$
3 . Укажите, как изменится положение нагрузочной линии в транзисторном усилителе в схеме с
 ОЭ: а) при уменьшении сопротивления R_K в цепи коллектора: Линия сдвинется влево Наклон люнии уменьшится Линиосдвинется вправо Наклон линии увеличится б) при увеличении ЭДС источника питания E_п: Линия сдвинется влево Наклон люнии уменьшится Линиосдвинется вправо Наклон линии увеличится
4 . Укажите, какой коэффициент усиленияпо напряжению в децибелах имеет двухкаскадный усилитель, если $K_{u1} = 100$ и $K_{u2} = 10$, где K_{u1} и K_{u2} — коэффициенты усиления первого и второго каскадов? О 20 дБ О 40 дБ О 60 дБ О 80 дБ
5. Определите коэффициент усиления по мощности двухкаскадного усилителя, если каждый каскад обеспечивает десятикратное усиление по напряжению. О 100 О 2000 О 400 О 10000
 6. Укажите, какую роль в схеме транзисторного усилителя с ОЭ? а) играет конденсатор С₃, включенный в цепь эмиттера: Обспечивает ООС по переменной составляющей сигнала Обеспечидает баланс фаз Резксослабляет (устраняет) ООС по переменной составляющей сигнала Обеспечивает подачу сигнала обратной связи на коллектор транзистора б) играет резистор R₃, включенный в цепь эмиттера: Обспечивает ООС по переменной составляющей сигнала
ОбеспечЮает баланс амплитуд УстрЮяет ООС по постоянной составляющей сигнала ○ Обеспечивает ООС по постоянной составляющей сигнала
7. Укажите, содержит ли выходной сигнал дифференциального усилителя с симметричным входом и выходом информациюо знаке постоянного входного сигнала? Да Нет О О
 8. Укажите причины дрейфа нуля в дифференциальных усилителях.
 □ Подключение к входу дифференциального сигнала □ Изменение температуры окружающей среды или саморазогревание транзисторов

-	миттерных ансной схем ірующие фа	областей траі іе кторы типа сил	•	
увеличении сопротивления Коэффициент <i>К</i> _u увелич	резистора <i>Ř,</i> нится рициента <i>К</i> и	κ.	пения K_u усилительного каскада с ОЭ почения K_k	при
Обоспечивает необхо при питании все ОбеспечЮает температурну Устр⊘няет ООС по посто О Увеличивает вхо	одимое знач х цепей тран ю стабилиза оянной соста одное сопро	иение постояння нзистора от одна нацию работы ка ввляющей сигна тивление усили	ала ительного каскада	
4.Электронные устройства	•	•		
непосредственн ○ Только диффер ○ На входе – дис выходе – двух	н напряжен ой связью м енциальные ференциал тактный уса работающих и	ия на полевь ежду каскадам каскады усиле пьный усилител илитель мощн в режиме эмит	ых транзисторах с общим истоком и и	. на
В.	іряжения <i>и_{вх}</i>		синфазного сигналов при подаче а неинвертирующий–напряжения <i>u</i> _{ex2} = 0,	на 541
а) дифференциальный сигна 5 мВ 4 мРЭ	aπ. 3⊘ıB	2 мВ	0	
б) синфазный сигнал:	30.2	0	O	
0,541 B 1,08 6 B	0 √ 545 B	0,543 B	0	
3 . Укажите коэффициенты ў $K_u = 10^5$: a) инвертирующего ОУ:	/силения $K_{\!\scriptscriptstyle d.}$	_{ос} ОУ при <i>R</i> ₁ =	10 кОм, R_{oc} = 490 кОм и коэффициенте	ОУ
49 50 O	4960	50ტ	0	
б) неинвертирующего ОУ:	.505		Č	
49 50 0	4900	50℃	0	
входное дифференциальное	е напряжени	$eu_{ex} = 4 \text{ MB}.$	го ОУ при R_1 = 10 кОм и R_{oc} = 500 кОм, е	сли
•	•	−0,2 B		
ОУ в отсутствие входных сиг	налов?	-	печивается нулевое напряжение на вых	оде
□ В современных ОУ в с требуются специа	ный и симме тсутствие в альные приё иальными зи пряжения см	тричный источ ходных сигнало мы коррекции о веньями, позво ещения нуля	ник питания, например, ± 15 В ов выходной сигнал всегда равен нулю и его работы оляющими путём регулировки устран	

6 . Укажите основную причину , почему ОУ без обратных связей непосредственно в качестве усилителя не применяется?
Низк _С й и не стабильный коэффициент усиления <i>К</i> _u даже у одного типа ОУ ○ Отсутствие возможности задать коэффициент <i>К</i> _u
Высо⊝ий коэффициент усиления и, как следствие, высокая чувствительность ОУ, которая приводит к его насыщению и неспособности обрабатывать входные сигналы О Наличие дифференциального каскада в схеме ОУ О Требуемый высокий уровень (≥ 1 В) входного разностного сигнала
7. Укажите, в устройствах на ОУ всегда ли формируется инверсный выходной сигнал? Да Нет ○ ○
13. Укажите, какую форму приобретает выходной сигнал инвертирующего ОУ при значительном увеличении входного синусоидального напряжения?
Биполярые полуволны, близкие к треугольной форме ○ Биполярные полуволны, близкие к трапециидальной форме ○ В виде прямоугольной волны ○ Остаётся синусоидальной 5.Генераторы сигналов на операционных усилителях
1. Укажите признаки, характеризующие построение и работу автоколебательных мультивибраторов, построенных на ОУ.
□ Обратные связи выполняют по переменному току
□ Обратные связи выполняют по постоянному току
□ У этих устройств имеется несколько устойчивых состояний равновесия
□ Работа этих устройств заключается в постоянной смене состояний квазиравновесия, что сопровождается формированием на выходе напряжения, близкого к прямоугольной форме
 □ На выходе мультивибраторов формируется синусоидальное напряжение □ В цепи обратной связи вводят колебательные контуры 2. Укажите принципиальный подход (приём) преобразования мультивибратора в одновибратор.
 ○ Таких приёмов не существует, так как проектирование одновибраторов выполняется на принципиально другой основе
на принципиально другой основе ○ Введение дополнительной обратной связи по переменному току
 Замена хотя бы одной обратной связи по переменному току связью по постоянному току
Смена полярности источника питания
О бімена полярности источника питания
3. Укажите, каким образом симметричный мультивибраторна ОУ можно преобразовать в несимметричный?
3. Укажите, каким образом симметричный мультивибраторна ОУ можно преобразовать в
3. Укажите, каким образом симметричный мультивибраторна ОУ можно преобразовать в несимметричный? ПутёО изменения постоянной времени зарядки или разрядки конденсатора, например,
 З. Укажите, каким образом симметричный мультивибраторна ОУ можно преобразовать в несимметричный? ПутёО изменения постоянной времени зарядки или разрядки конденсатора, например, увеличив сопротивление резистора в цепи зарядки конденсатора Путём и Оменения постоянной времени зарядки или разрядки конденсатора, например, увеличив
3. Укажите, каким образом симметричный мультивибраторна ОУ можно преобразовать в несимметричный? ПутёО изменения постоянной времени зарядки или разрядки конденсатора, например, увеличив сопротивление резистора в цепи зарядки конденсатора Путём и Оленения постоянной времени зарядки или разрядки конденсатора, например, увеличив ёмкость конденсатора
 Укажите, каким образом симметричный мультивибраторна ОУ можно преобразовать в несимметричный? ПутёО изменения постоянной времени зарядки или разрядки конденсатора, например, увеличив сопротивление резистора в цепи зарядки конденсатора Путём и Оменения постоянной времени зарядки или разрядки конденсатора, например, увеличив ёмкость конденсатора ЗашуОтировать конденсатор диодом ЗамеОить в цепи ПОС (см. рис. 27.6) любой из последовательно соединённых резисторов
 3. Укажите, каким образом симметричный мультивибраторна ОУ можно преобразовать в несимметричный? ПутёО изменения постоянной времени зарядки или разрядки конденсатора, например, увеличив сопротивление резистора в цепи зарядки конденсатора Путём иОменения постоянной времени зарядки или разрядки конденсатора, например, увеличив ёмкость конденсатора ЗашуОтировать конденсатор диодом ЗамеОить в цепи ПОС (см. рис. 27.6) любой из последовательно соединённых резисторов конденсатором
 3. Укажите, каким образом симметричный мультивибраторна ОУ можно преобразовать в несимметричный? ПутёО изменения постоянной времени зарядки или разрядки конденсатора, например, увеличив сопротивление резистора в цепи зарядки конденсатора Путём иОменения постоянной времени зарядки или разрядки конденсатора, например, увеличив ёмкость конденсатора ЗашуОтировать конденсатор диодом ЗамеОнть в цепи ПОС (см. рис. 27.6) любой из последовательно соединённых резисторов конденсатором ВвесОн дополнительную обратную связь по переменному току. 6. Укажите длительность t_ипрямого хода ГЛИН (см. рис. 27.9), если U_{ех} = −5 В, U_{еых} = 0,333 В, R =
 3. Укажите, каким образом симметричный мультивибраторна ОУ можно преобразовать в несимметричный? ПутёО изменения постоянной времени зарядки или разрядки конденсатора, например, увеличив сопротивление резистора в цепи зарядки конденсатора Путём иОменения постоянной времени зарядки или разрядки конденсатора, например, увеличив ёмкость конденсатора ЗашуОтировать конденсатор диодом ЗамеОить в цепи ПОС (см. рис. 27.6) любой из последовательно соединённых резисторов конденсатором ВвесОн дополнительную обратную связь по переменному току. 6. Укажите длительность t_ипрямого хода ГЛИН (см. рис. 27.9), если U_{ех} = −5 B, U_{еых} = 0,333 B, R = 300 кОм, C = 10 нФ. О 0,2 мсО 2 мсО 6 мсО 8 мксО 10 мкс 7. Укажите значение ёмкостинесимметричного мультивибратора (см. рис. 27,6), если R₁ = 50 кОм,
 3. Укажите, каким образом симметричный мультивибраторна ОУ можно преобразовать в несимметричный? ПутёО изменения постоянной времени зарядки или разрядки конденсатора, например, увеличив сопротивление резистора в цепи зарядки конденсатора Путём и Оменения постоянной времени зарядки или разрядки конденсатора, например, увеличив ёмкость конденсатора ЗашуОтировать конденсатор диодом ЗамеОть в цепи ПОС (см. рис. 27.6) любой из последовательно соединённых резисторов конденсатором ВвесО дополнительную обратную связь по переменному току. 6. Укажите длительность флрямого хода ГЛИН (см. рис. 27.9), если U_{ех} = −5 В, U_{еых} = 0,333 В, R = 300 кОм, C = 10 нФ. О 0,2 мсО 2 мсО 6 мсО 8 мксО 10 мкс

рис. 27.9)?
Напряжением питания
Уровнем и длительностью входного напряжения и постоянной времени <i>RC</i> -цепи
о Параметрами ОУ ○ Параметрами цепи зарядки конденсатора
9. Укажите, может ли на выходе мультивибратора сформироваться сигнал треугольной формы? Да Нет О О
10 . Укажите признаки , характеризующие структуру и работу автогенераторов синусоидальных колебаний.
□ На выходе автогенераторов формируется напряжение типа меандр, а синусоидальное напряжение формируется с помощью подключаемого фильтра
$\ \square$ Простейший LC -генератор — это избирательный (резонансный) усилитель, собранный на нелинейном активном элементе с колебательной системой
□ Наличие глубокой положительной ОС, по которой гармоническое колебание с выхода усилителя с нелинейной ВАХ передаётся на его вход
□ Работа автогенераторов заключается в самовозбуждении гармонических колебаний без внешнего источника постоянного напряжения
□ Частота генерируемых колебаний автогенераторов определяется параметрами колебательного контура или фазосдвигающих звеньев, встраиваемых в цепи ОС избирательного усилителя с нелинейной ВАХ
□ Коэффициент передачи ООС всегда больше коэффициента передачи ПОС
12. Укажите выражения, относящиеся к условиям самовозбуждения автогенераторов
гармонических колебаний.
$\Box K_{u}/(K_{u}+1) > 1/3 \Box K_{u}/\beta = 3 \qquad \Box K_{u}\beta = 1 \qquad \Box K_{u}\beta = 1/3$
$\Box \beta = k\pi \Box \beta = 2k\pi \Box \beta = k\pi/2 \Box \beta = -\pi$ 13 . Укажите, можно ли выполнитьавтогенератор гармонических колебаний свнутренней
обратной связью?
Да, опи использовать в схеме генератора-усилителя элементы с ВАХ, имеющим падающие
участки, например туннельные диоды
участки, например туннельные диоды О Нет
участки, например туннельные диоды Нет Да, если генератор построен на полевых транзисторах
участки, например туннельные диоды О Нет О Да, если генератор построен на полевых транзисторах Да, осли в качестве усилительного элемента генератора использован биполярный
участки, например туннельные диоды — Нет — Да, если генератор построен на полевых транзисторах — Да, — Ссли в качестве усилительного элемента генератора использован биполярный транзистор, включенный по схеме с общей базой — Да, если в схему генератора ввести обратную связь по постоянному току
участки, например туннельные диоды
участки, например туннельные диоды
участки, например туннельные диоды
участки, например туннельные диоды \bigcirc Нет \bigcirc Да, если генератор построен на полевых транзисторах Да, \bigcirc сли в качестве усилительного элемента генератора использован биполярный транзистор, включенный по схеме с общей базой \bigcirc Да, если в схему генератора ввести обратную связь по постоянному току 14. Укажите частоту колебаний выходного напряжения генератора (см. рис. 28.10), если $R_1 = R_2 = 20$ кОм, $C_1 = C_2 = 10$ нФ. 3568 Гц \bigcirc 1786 Гц \bigcirc 1244 Гц \bigcirc 796 Гц \bigcirc 485 Гц 15. Укажите период колебаний выходного напряжения LC -генератора (см. рис. 28.3), если $C_1 = C_2 = 510$ нФ, $L = 5$ мГн.
участки, например туннельные диоды
участки, например туннельные диоды \bigcirc Нет \bigcirc Да, если генератор построен на полевых транзисторах Да, \bigcirc сли в качестве усилительного элемента генератора использован биполярный транзистор, включенный по схеме с общей базой \bigcirc Да, если в схему генератора ввести обратную связь по постоянному току 14. Укажите частоту колебаний выходного напряжения генератора (см. рис. 28.10), если $R_1 = R_2 = 20$ кОм, $C_1 = C_2 = 10$ нФ. 3568 Гц \bigcirc 1786 Гц \bigcirc 1244 Гц \bigcirc 796 Гц \bigcirc 485 Гц 15. Укажите период колебаний выходного напряжения LC -генератора (см. рис. 28.3), если $C_1 = C_2 = 510$ нФ, $L = 5$ мГн. 22.2 кЧс \bigcirc 44,4 мкс \bigcirc 68,6 мкс \bigcirc 224 мкс \bigcirc 1,08 мс 6.Активные фильтры на операционных усилителях 7.Логические элементы и схемы
участки, например туннельные диоды
участки, например туннельные диоды \bigcirc Нет \bigcirc Да, если генератор построен на полевых транзисторах Да, \bigcirc сли в качестве усилительного элемента генератора использован биполярный транзистор, включенный по схеме с общей базой \bigcirc Да, если в схему генератора ввести обратную связь по постоянному току 14. Укажите частоту колебаний выходного напряжения генератора (см. рис. 28.10), если $R_1 = R_2 = 20$ кОм, $C_1 = C_2 = 10$ нФ. 3568 Гц \bigcirc 1786 Гц \bigcirc 1244 Гц \bigcirc 796 Гц \bigcirc 485 Гц 15. Укажите период колебаний выходного напряжения LC -генератора (см. рис. 28.3), если $C_1 = C_2 = 510$ нФ, $L = 5$ мГн. 22.2 кЧс \bigcirc 44,4 мкс \bigcirc 68,6 мкс \bigcirc 224 мкс \bigcirc 1,08 мс 6.Активные фильтры на операционных усилителях 7.Логические элементы и схемы
участки, например туннельные диоды

2. Укажите выражение	логической	функции	двух	переменных	X 1	И	X 2,	реализуемой	элементом
"Стрелка Пирса".									

0

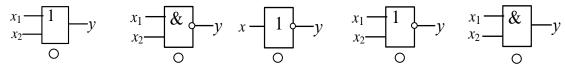
$$y = \bar{x}_1 x_2 + x_1 \bar{x}_2 Q y = x_1 x_2$$
 $y = x_1 + x_2 Q$

$$y = x_1 \oplus x_2$$
 $y = Q_1 + x_2$ $y = x_1 x_2$ O

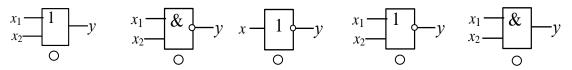
3. Укажите **выражение** логической функции двух переменных x_1 и x_2 , реализуемой элементом "Штрих Шеффера".

$$y = \bar{x}_1 x_2 + x_1 \bar{x}_2 Q y = \bar{x}_1 x_2 \quad y = x_1 \oplus Q$$

$$y = \bar{x}_1 + x_2 \quad y = Q_1 + x_2 \quad v = x_1 x_2 \quad O$$


4.Укажите **выражение**логической функции трех переменных a, δ и c, записанной в совершенной дизъюнктивной нормальной форме (СДНФ).

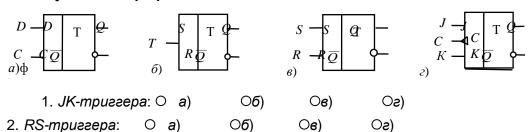
$$y(a,b,c) = \overline{a} \mathcal{D} + a\overline{b} c + ab\overline{c} + abc$$


$$y(a,b,c) = (a + b + c)(a + b + \overline{c})(a + \overline{b} + c)(\overline{a} + b + c)$$

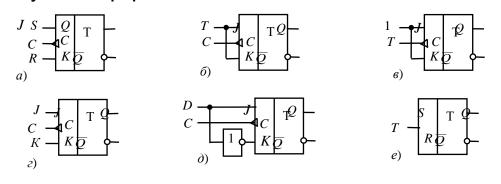
$$y(a, b, c) = (\overline{a} + c + a \overline{b} c)(ab\overline{c} + \overline{ab} + \overline{c} a)$$

5. Укажите элемент ИЛИ-НЕ.

6. Укажите элемент И.



8.Исследование цифровых устройств последовательного типа (триггеры, регистры, счетчики) Триггеры


1. Укажите, какая **комбинация** логических сигналов является запрещённой для асинхронного *R* S-триггера?

0 01 0 11 0 10 0 00

2. Укажите условное графическое обозначение:

3. Укажите условное графическое обозначение:

1. Синхронно	го Т-три	іггера,	выпол	пненн	н озон	а осн	ове ЈК-	триггера	:	
	a)	б)	<i>e</i>)		<i>e</i>)	∂)	e)		
	0	0		0		0	C)	
2. <i>D-m</i>	риггера,	выпол	ненно	го на	осно	зе JK-	тригге	ера:		
	<i>a</i>)	б)	<i>6</i>)		г)	∂)	ϵ	?)		
	0	0		0		0	0	· C)	
5 .Укажите, как	функци	ониру	ет <i>JK</i> -т	григге	ер при	і комб	инации	J = 1, K =	1 на входе?	,
Триггер р Такая ком	раб <i>С</i> тает	в счётн	ном ре	жиме	2	•	анения запрещ	ённой		
триггера синхр	оимпульс	а при т	актово	ой час	стоте і				моменту по	дачи на С-вход <i>D</i> -
	0,1 c			-						
7. Укажите зна после окончан 00 О 1		вия син	нхрои	ипуль	ca.	оиггер	а при к	омбинаци	и <i>J</i> = 1, <i>K</i> = (0 на входе и Q = 1
8 . Укажите ан	алитиче	ское в	ыраж	ение,	ОПИС	ываюі	щее раб	боту:		
a) $Q^{t+1} =$	$= Q^t \overline{T} + \overline{Q}$	$T; \sigma$	$Q^{t+1} =$	$= S + \epsilon$	$Q^t \overline{R};$					
e) $Q^{t+1}=$	~ ~		•		•	$+J^{t}\overline{Q}$	\bar{t} .			
1.	RS-mpue	гера:	O a))	<i>ර</i>)		○ 8)	(s○		
	JK- mpue							(s)		
	T-mpuese						Oe)	(sO		
	D-тригго	-	,		<i>○б</i>)		O8)	(s○		
11 . Укажите, к	•	ипу трі	иггеро	в отн	осят	<i>I</i> -триг	геры?			
.ОК асинх										
ОК синхро Регистры										
•		otoni io	n ofu	IOM C	EV/1100	MOW	T DI IDO	GUGTI POE	ACTO	
 Укажите фу □ Обнул 		-			•		эт выпол эмации,	•	лстр. входной	информации г
•	іение (б :ледовате	•	, .					запись	входнои	информации в
□ Суммир чис		ю моду	/лю 2	всех	разр	ядов	бинарні	ых чисел	с целью вы	яснения чётности
pa	авенства	или не	равен	ства			·	•		определения их
• •				•					и тактовых и	•
ПОС	ледовате	ельном	или в	пара	аллелі	ьном і	коде			й информации в
□ Преобра	азование	десяти	ІЧНЫХ	чисел	1 в дв	оичнь	іе или в	двоично-	десятичные	
										иация на выходах к называют такой
Регистр пр Реверсивн						атΩог інєΩия	о сдвига 1.	a		
3 . Укажите, ка	•	•						авлением	1?	
Последог	•	•					льные			
Последов	⊙тельно-і	паралл	ельнь	ie	Пара	плел	Эно-пос	ледовате	пьные	

4.Укажите, при каких уровнях сигналов на управляющих входах S0 и S1 информационные входь реверсивного регистра 74HC194_4V недоступны?
S0 = 0, S1 = 0 \bigcirc S0 = 0, S1 = 1 \bigcirc
S0 = 1, S1 = 0 \bigcirc S0 = 1, S1 = 1 \bigcirc
5.Укажите, в какой разряд вводится информация последовательного регистра 74HC194_4V при S0 = 1, S1 = 0 на управляющих входах и сигналах SR = 1 и $\overline{\text{CLR}}$ = 1? ○ В разряд D В разряд © В разряд B В разряд A .
6. Укажите, при каких уровнях управляющих сигналов S0 и S1 разрешена запись информации в параллельный регистр 74HC194_4V ?
S0 = 0, S1 = 0 \bigcirc S0 = 0, S1 = 1 \bigcirc
S0 = 1, S1 = 0 \bigcirc S0 = 1, S1 = 1 \bigcirc
Стетчики
1. Укажите, в каком виде фиксируется в счётчике число поступивших на его вход импульсов?
В висе двоичного кода, хранящегося в триггерах В висе потенциала (напряжения), хранящегося на зажимах выходного конденсатора счётчика
 В виде двоично-десятичного кода, хранящегося в выходном регистре
В Оиде десятичного числа, высвечиваемого на индикаторе
 Укажите необходимое число выходов двоичного счётчика для выдачи результатов счёта 28 импульсов.
3 4 0 5 0 6 0 8 0 0
3 . Укажите, в какой момент 5-разрядный двоичный счетчик возвращается в начальное состояние?
При пост⊊ллении на вход 16-го импульса
○ При подаче на вход 32-го импульса
При пода∕Ω на вход инверсного сигнала
\bigcirc При переполнении, наступающем при числе импульсов $N=2^5-1$
4 .На 7-сегментном индикаторе десятичного счётчика высвечивается число 5. Укажите, какое число будет высвечиваться на индикаторе при подаче на вход ещё 6-ти импульсов?
0 1 0 2 0 3 0 0
0 1 ○ 2 ○ 3 ○ ○ ○ 5 .Укажите, каким путём передаются сигналы от разряда к разряду в синхронном счётчике?
 5.Укажите, каким путём передаются сигналы от разряда к разряду в синхронном счётчике? ○ Естественным путём в различные интервалы времени в зависимости от сочетания
 5.Укажите, каким путём передаются сигналы от разряда к разряду в синхронном счётчике? ○ Естественным путём в различные интервалы времени в зависимости от сочетания входных сигналов
 5.Укажите, каким путём передаются сигналы от разряда к разряду в синхронном счётчике? ○ Естественным путём в различные интервалы времени в зависимости от сочетания
 5.Укажите, каким путём передаются сигналы от разряда к разряду в синхронном счётчике? ○ Естественным путём в различные интервалы времени в зависимости от сочетания входных сигналов ○ Принудительным путём с помощью тактовых импульсов ○ Посредством специальной переключающей схемы
 5.Укажите, каким путём передаются сигналы от разряда к разряду в синхронном счётчике? Стественным путём в различные интервалы времени в зависимости от сочетания входных сигналов Принудительным путём с помощью тактовых импульсов Посредством специальной переключающей схемы Путом подачи сигнала 0 на входы <i>J</i> всех <i>JR</i>-триггеров 6. Укажите, что понимают под коэффициентом пересчёта счётчика? Это минимально допустимый период следования входных импульсов, при котором
 5.Укажите, каким путём передаются сигналы от разряда к разряду в синхронном счётчике? Стественным путём в различные интервалы времени в зависимости от сочетания входных сигналов Принудительным путём с помощью тактовых импульсов Посредством специальной переключающей схемы Путом подачи сигнала 0 на входы Ј всех JR-триггеров 6. Укажите, что понимают под коэффициентом пересчёта счётчика? Это минимально допустимый период следования входных импульсов, при котором обеспечивается надёжная работа счётчика Это интервал времени между моментами поступления входного импульса и окончания
 5.Укажите, каким путём передаются сигналы от разряда к разряду в синхронном счётчике? ○ Естественным путём в различные интервалы времени в зависимости от сочетания входных сигналов ○ Принудительным путём с помощью тактовых импульсов ○ Посредством специальной переключающей схемы ПутОм подачи сигнала 0 на входы <i>J</i> всех <i>JR</i>-триггеров 6. Укажите, что понимают под коэффициентом пересчёта счётчика? ○ Это минимально допустимый период следования входных импульсов, при котором обеспечивается надёжная работа счётчика ○ Это интервал времени между моментами поступления входного импульса и окончания самого длинного переходного процесса в счётчике ○ Это максимальное число единичных сигналов, которое может быть зафиксировано на
 5.Укажите, каким путём передаются сигналы от разряда к разряду в синхронном счётчике? Сетественным путём в различные интервалы времени в зависимости от сочетания входных сигналов Принудительным путём с помощью тактовых импульсов Посредством специальной переключающей схемы Путом подачи сигнала 0 на входы Ј всех JR-триггеров 6. Укажите, что понимают под коэффициентом пересчёта счётчика? Это минимально допустимый период следования входных импульсов, при котором обеспечивается надёжная работа счётчика Это интервал времени между моментами поступления входного импульса и окончания самого длинного переходного процесса в счётчике

 $M = 2^{n}M = 2^{0}-1M = 2^{n}-2M = 2^{n-1}$

Укажите пересчёта		риггеров до	олжен им	еть двои	чно-кодир	ованный счё	тчик с коэффициен	TOM
	0 2	03	Q	Ø	Q2			
мультипло	ексор).	образовате	лей кодс	ов (деши	іфратор,	шифратор,	демультиплексор	И
1. Укажите								
для преобри печатаю б) Для премикрокалы соответств в) Для хра в) Для коодну выход д) Для расодного инс	разования д щими устро образовани куляторах, ующих дво нения и про ммутации в цную; спределени формацион	цвоично-деся йствами; ня десятичны в которы ичных кодов вобразовани в заданном ня в требуенного входа,	ятичного к их чисел в их нажат ; я многора порядке с мой после в частно	ода в део двоичны ие део зрядных игналов, едовател	сятичный е или в до втичных двоичных поступак вности п передач	с целью упра воично-десят клавишей к чисел; ощих с неско о нескольки	их устройствах, а та ивления индикаторны ичный код, наприме вызывает генерацильких входных шини выходам сигнало ий по одной линии ется:	ыми р, в цию в о
1. 🛚	Шифратор :	○ a)	o б)	○ в)	0	s) Ο δ)		
3. M	ешифратор Іультиплекс емультипле	cop: O a)	O 6	о б) С	в)	, ,	∂) ∂) ○ ∂)	
передават	ься информ О	лация на вых О 1 О	од мульти 3 (иплексора ⊃ 5	а 8х3 при ○ 7	адресном код О 9	ого слова XWG бу де 100 на его входе?	
3. Укажите	число выв	одов дешиф	рратора пр	ри трёх и	нформаці	ионных входа	ax.	
		2 0	4 (O 6	0 8	O 16		
5 . Укажите помощью д			ателе вы	бор вход	а по его	номеру (адр	есу) осуществляетс	яс
ОВш	ифраторе	В дешифр	раторе О	В мульт	иплексор	е В демул	ьтиплексоре	
6. Укажите	число вы	водов у шиф	ратора пр	ои четыр	ёх инфорг	мационных в	одах.	
		216 0		O 4	0 2	0 1		
		рового ком по ли устан						
разрядных устройства	бинарных сравнения	чисел А и і; б) какой ур е чисел А и Е	В с пои оовень си В?	иощью г	риведенн	HOFO b_0	$\begin{bmatrix} a_1 & & & 1 \\ b_1 & & & & -Y_{=} \end{bmatrix}$ ero)
а) Д	ļа	О Нет	O			$\bar{b}_0 -$	\bar{q}_1	
б) ()	Ø	0			_		
2 . Укажите	, какую фун	ікцию выпол	тняет циф	ровой ко	мпаратор	?	$b_1 \bigsqcup -$	
Сровне	ение двух	-	исел А	и В одиі	наковой р		тности числа с целью определе	ния
0 X	ранение и і	преобразова	ние много	разрядн	ых чисел			
O C	равнение п	іилообразноі	го сигнала	і с образі	цовым			
3. Укажите	логическу	юфункцию,	выражаю	щую рав	енство <i>і-</i> х	разрядов дв	оичных чисел.	

4 . Укажите, к какому типу цифровых устройств относят компараторы?
К последСвательностным
○ К комбинационным
5 . Укажите число активных логических сигналов, формирующихся на выходе компаратора при сравнении многоразрядных двоичных чисел.
○ Число активных выходных сигналов равно числу разрядов сравниваемых бинарных чисел.
O 4
0 2
1 0
6. Укажите, чем определяется число входов цифрового компаратора? КоΩпараторы всегда имеют четыре входа
 Число входов зависит от степени декомпозиции сравнивающего устройства и равно числу элементов сравнения одноразрядных слов
Числ <i></i> Овходов определяется разрядностью сравниваемых бинарных чисел
7. Укажите, можно ли построить устройство сравнения требуемой разрядности, используя цифровые компараторы с ограниченной разрядностью (например, четырёхразрядные)? Да Нет О О
10.Исследование интегрального цифро-аналогового преобразователя 1. Укажите назначение ЦАП.
 Для преобразования цифрового кода N в пропорциональное аналоговое значение напряжения u(N)
Для деΩения числа или частоты повторения импульсов на заданный коэффициент <i>К</i>
Для преобразования информации из последовательной во времени формы представления в параллельную форму
2 . Укажите, какая структура резистивных матриц ЦАПимеет преимущество при изготовлении преобразователя посредством интегральной технологии?
просорасоватоли пеородотвом интегральной технологии.
Матрица с весовыми резисторами При ⊝зготовлении ЦАП с помощью интегральной технологии структура матриц не играет существенного значения, так как высокая точность и быстродействие систем коднапряжение зависят от типа переключателей (ключей) во входной разрядной цепи ○ Матрица <i>R</i> -2 <i>R</i>
Матрица с весовыми резисторами При ⊝зготовлении ЦАП с помощью интегральной технологии структура матриц не играет существенного значения, так как высокая точность и быстродействие систем коднапряжение зависят от типа переключателей (ключей) во входной разрядной цепи
Матрица с весовыми резисторами При ⊝зготовлении ЦАП с помощью интегральной технологии структура матриц не играет существенного значения, так как высокая точность и быстродействие систем коднапряжение зависят от типа переключателей (ключей) во входной разрядной цепи ○ Матрица <i>R</i> -2 <i>R</i>
Матрица с весовыми резисторами При ⊝зготовлении ЦАП с помощью интегральной технологии структура матриц не играет существенного значения, так как высокая точность и быстродействие систем коднапряжение зависят от типа переключателей (ключей) во входной разрядной цепи ○ Матрица <i>R-2R</i> 3. Определите понятие "абсолютнаяразрешающая способность" ЦАП. ○ Это возможное количество уровней аналогового сигнала, делённое на количество

 $y = a_i b_i + \overline{a_i} \overline{b_i}$ $y = \overline{a_i b_i}$ $y = \overline{a_i b_i}$ $y = \overline{a_i b_i} + a_i \overline{b_i}$

Для *О*величения диапазона ±*u*_{вых}выходного напряжения

4. Укажите, для чего выбирают опорное напряжение **двуполярным**?

О Чтобы преобразовать двоичные коды в ток

О Чтобы получать на выходе двуполярное напряжение $\pm u_{\text{вых}}$ при различных входных кодах

○ Для обеспечения работы ЦАП, содержащего резистивную матрицу с весовыми

○ Это среднее значение минимального изменения сигнала на выходе ЦАП,

обусловленное увеличением или уменьшением его кода на единицу

резисторами, диодные ключи и систему управления ключами

о чтооы максимальное выходное напряжение цатт не оыло меньше опорного напряжения и₀ на величину 3MP (3MP – значение младшего разряда)
5.Укажите перспективы развития ЦАП.
□ Повышение быстродействия ключей и уменьшение времени установки ОУ
□ Построение ЦАП без резистивной матрицы
□ Применение стабилизированных источников опорного напряжения
 □ Уменьшение разрядности преобразователя код-напряжение (до 46)
□ Улучшение качества резистивных матриц
11.Исследование интегрального 8-раз¬рядного аналого-цифрового преобразователя.
1 . Укажите назначение АЦП.
Для преобразования кодов
 ○ Для преобразования цифрового кода N в пропорциональное аналоговое значение напряжения u(N)
Для пр⊃образования постоянного напряжения, заданного на тактовом интервале, в двоичный код
⊄Для преобразования информации из последовательной во времени формь представления в параллельную форму
2 . Укажите формулу Котельникова , с помощью которой определяют шаг дискретизации <i>д</i> аналогового сигнала.
$\Delta t \leq 1/2 f_m \Delta t \leq O/f_m \Delta t \leq t_{ex}/2^{N+1} \Delta t O_{ex}/2^{N-2} \qquad \bigcirc$
$(f_m$ — максимальная частота спектра аналогового сигнала; $t_{ m ex}$ — длительность аналогового сигнала; N — число уровней квантования)
3. Определите понятие "абсолютнаяразрешающая способность" АЦП.
○ Это число уровней квантования, делённое на количество разрядов выходного кода
 Это наибольшее значение отклонения аналогового сигнала от расчётного
Это Ореднее значение минимального изменения входного сигнала, обуславливающего
увеличение или уменьшение выходного кода на единицу О Это время преобразования отсчёта входного сигнала
4. Укажите, можно ли подавать на входы V _{ref+} и V _{ref-} АЦП разные (по модулю) напряжения ?
Да Нет О О
5 .Укажите, можно ли свести к нулю погрешность квантования аналогового сигнала посредствомвыбора параметров устройства, например за счёт увеличения разрядности АЦП?
Да Нет О О
6 .Укажите, какую погрешность квантования имеет 8-разрядный АЦП при напряжениях на входах $V_{ref+} = 2$ В, $V_{ref-} = 0$ и отсчёте входного напряжения $u_{ex}(k\Delta t) = 1$ В?
$\pm 4,15$ OıB $\pm 3,91$ OıB $\pm 3,1$ O MB $\pm 2,2$ O MB $\pm 1,9$ O MB
7. Укажите десятичный эквивалент двоичного кода на выходе 8-разрядного АЦП, если опорные напряжения $V_{ref+} = 2$ B, $V_{ref-} = -2$ B, а входное напряжение $u_{ex} = 0.5$ B.
O 48 O 32 O 16 O 8
8. Выберите из приведенных ниже значений минимально необходимые значения опорных напряжений $\pm V_{ref}$ для преобразования синусоидального напряжения $u_{ex}(t) = 1,41\sin\omega t$.
±1 B O ±2 B O ±3 B O ±4 B O ±5 B O
9 . Укажите значение расчётного шестнадцатеричного кода 16-разрядного АЦП, если на его вход подано напряжение $u_{ex}(k\Delta t) = 0.25$ В при $\pm V_{ref} = \pm 2$ В.
○ 1000 ○ FFF ○ 10000 ○ FFFFFFA ○
10. Укажите выражение, с помощью которого определяют десятичный эквивалент двоичного
кода на выходе 14-разрядного АЦП

	$D = 256 \mu_{ex}/(V_{ref+} + -V_{ref-})D = 16384 \mu_{ex}/(V_{ref+} + -V_{ref-})$			
	$D = 40 \text{Co} u_{\text{ex}} / (V_{\text{ref+}} + -V_{\text{ref-}}) D = 655366 u_{\text{ex}} / (V_{\text{ef+}} + -V_{\text{ref-}})$			
11 . наг	Укажите, как изменится выходной код АЦП при неизменном входном $u_{\rm ex}$ и опорных иряжениях $V_{\rm ref+}$ = 2 В и $V_{\rm ref-}$ = -2 В, если установить $V_{\rm ref-}$ = 0?			
	Его з⊙ачение уменьшится в 2 раза Не Озменится О Его значение увеличится в 2 раза ОСменится на инверсный.			
	Укажите характер изменения общей погрешности преобразования входного сигнала при личении разрядности АЦП.			
	Погрек преобразования уменьшится Не изк сенится ○ Погрешность преобразования увеличится ОНет правильного ответа			
13 .	Укажите перспективные направления развития АЦП.			
	 □ Повышение быстродействия основных узлов АЦП, в частности, компараторов □ Увеличение частоты генератора тактовых импульсов □ Применение стабилизированных источников опорного напряжения □ Уменьшение разрядности преобразователя напряжение-код (до 46) □ Использование микропроцессоров в преобразователях 			
14 .	Укажите, какие операции необходимо выполнить при аналого-цифровом преобразовании?			
	Огр⊋ичение уровня и дискретизацию по времени аналогового сигнала			
	Тактфуемое интегрирование входного сигнала и сравнение полученного результата с эталонами			
	 ○ Дискретизацию по времени аналогового сигнала, квантования по уровню его отсчётов и кодирование квантованных уровней 			
	Дискретизацию по времени аналогового сигнала, квантование по уровню для подачи на вход ЦАП			
	Укажите, обладает ли способ последовательного счёта аналого-цифрового преобразования обольшим быстродействием?			
	Да Нет О О			

20.2. Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств: зачет

Перечень вопросов к зачету:

Примерывопросовприпроверкелекционного материала:

- 1. Охарактеризуйте основные типы датчиков, используемых в медицине и биологии.
- 2. Дайте определение величинам: погрешность преобразования, точность и диапазон,порог чувствительности.
- 3. Измерительныецепипрямогоиуравновешивающегопреобразования.
- 4. Охарактеризуйтеустройствоиосновные параметры электродов электрокардиографови электроэнц ефалографов, металлических истеклянных электродов длярегистрациивнутриклеточных имембранн ых потенциалов.
- 5. Резистивныедатчики.
- 6. Полупроводниковыефотопреобразователииихиспользованиевмедицинской аппаратуре.
- 7. Областиприменениятермодатчиковвмедицине.
- 8. Пьезоэлектрическиепреобразователи:принципдействия,конструкции,типовое применениевтерапевтической идиагностической аппаратуре.
- 9. Опишите устройство и применение измерительных модуляторов и демодуляторов.
- 10. Типовыесхемыфильтровваппаратуребиомедицинскогоназначения.
- 11. Охарактеризуйтеосновныесхемыпостроениягенераторов.

Примерывопросовприпроверкелабораторных работ:

- 1. Что представляет собой p-n переход. Из каких полупроводников состоят диоды и стабилитроны.
- 2. Каковы назначение и области применения полупроводниковых выпрямительных диодов(стабилитронов).
- 3. Что такое вольтамперная характеристика полупроводникового диода (стабилитрона). Какая ветвь вольтамперной характеристики является рабочей для стабилитрона, а какая для выпрямительного диода.
- 4. Что такое статический коэффициент передачи тока базы b в схеме ОЭ.
- 5. Что называется входной вольтамперной характеристикой биполярного транзистора (в схеме с общим эмиттером)
- 6. Что называется выходной вольтамперной характеристикой биполярного транзистора (в схеме с общим эмиттером)
- 7. Что является основными носителями, а что является неосновными носителями в полупроводнике р-типа (n-типа)
- 8. Характеристики идеального операционного усилителя.
- 9. Укажите условия, благодаря которым коэффициент усиления идеального усилителя с замкнутой обратной связью полностью определяется цепью обратной связи.
- 10. Начертите следующие схемы с операционным усилителем: повторитель напряжения, неинвертирующий усилитель, инвертирующий усилитель с внешней обратной связью.
- 11. Дайте определение напряжения сдвига.
- 12. Начертите следующие схемы с операционным усилителем: инвертирующего сумматора, схему сложения (вычитания). Объясните принцип действия схем.
- 13. Объясните принцип действия интегрирующей и дифференцирующей схем с операционным усилителем.
- 14. Начертите схемы логарифмического усилителя. Объясните принцип действия.
- 15. Объясните принцип действия пикового детектора с операционным усилителем.
- 16. Начертите переходную характеристику идеального операционного усилителя с отрицательной обратной связью, имеющих Ucм не равно 0, Ucм = 0. Объясните вид характеристик.
- 17. Объясните принцип работы компаратора.
- 18. Назовите основные преимущества активных фильтров перед пассивными. Недостатки активных фильтров.
- 19. Перечислите основные типы фильтров. Начертите их частотные характеристики. Укажите полосу заграждения, пропускания и переходной участок.
- 20. Основные характеристики фильтров в частотной области. Временные характеристики фильтров.
- 21. Что такое передаточная функция фильтра? Укажите связь между числом полюсов передаточной функции и наклоном характеристики фильтра на переходном участке. Логарифмические характеристики. Их преимущества.
- 22. Перечислите преимущества каждого из следующих типов фильтров: Бесселя, Баттерворта, Чебышева, фильтра с критическим затуханием.
- 23. Полосовой фильтр. Его основные характеристики. Схемы полосового фильтра.
- 24. Основные понятия и термины цифровой электроники.
- 25. Понятие цифровой схемы (аналоговый и цифровой сигналы).
- 26. Логические элементы. Основные и комбинированные.
- 27.Синтез логических устройств.
- 28. Триггеры. Основные понятия. Асинхронный RS-триггер
- 29.Счетчики. Назначение. Типы счетчиков, их назначение.
- 30.Основные показатели счетчиков. Делитель частоты.
- 31.Регистры. Назначение. Типы регистров.Параллельные регистры. Методика записи и считывания информации.Последовательные регистры. Методика записи и считывания информации. Умножение «на 2».

- 32.Дешифраторы и шифраторы. Назначение. Таблица истинности для дешифратора на 2 разряда и шифратора на 4 входа.
- 33.Назначение ЦАП (АЦП).
- 34. Какие методы преобразования используются в ЦАП (АЦП).
- 35.Какие основные параметры имеют ЦАП (АЦП), Что такое нелинейность шкалы АЦП.
- 36. Чем определяются погрешности при методе последовательного уравновешивания.
- 37. Чем определяется погрешность при методе считывания, поразрядного уравновешивания.
- 38. Каковы основные достоинства и недостатки основных методов преобразования.
- 39. Что такое динамическая погрешность для АЦП.

Пример К	И	M	:
----------	---	---	---

	УТВЕР >	КДАЮ
Заведующий кафедрой	ядерной ф	оизики
	С.Г. Кадме	<u>енский</u>
		.20

Направление подготовки: 30.50.01 Медицинская биохимия

Дисциплина: Медицинская электроника

Форма обучения: очная Вид контроля: зачет

Вид аттестации: промежуточная

Контрольно-измерительный материал №1

- 1. Что представляет собой р-п переход. Из каких полупроводников состоят диоды и стабилитроны.
- 2. Триггеры. Основные понятия. Асинхронный RS-триггер.
- 3. Начертите следующие схемы с операционным усилителем: инвертирующего сумматора, схему сложения (вычитания). Объясните принцип действия схем.
- 4. Какие основные параметры имеют ЦАП (АЦП), Что такое нелинейность шкалы АЦП.
- 5. Охарактеризуйте основные типы датчиков, используемых в медицине и биологии

Преподаватель	 Сабуров А.Н.	
	подпись	расшифровка подписи

Описание технологии проведения

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы по лекционному материалу и лабораторным работам по аналоговой, цифровой и аналого-цифровой электронике, позволяющие оценить уровень полученных знаний и степень сформированности умений и навыков.

Требования к выполнению заданий, шкалы и критерии оценивания

Для оценивания результатов обучения на зачете с оценкой используется качественная шкала: «зачтено», «не зачтено».

Критерии оценивания компетенций	Шкала оценок
Глубокое знание основного и дополнительного учебно-программного материала на уровне количественной характеристики, владение основными понятиями дисциплины. Посещение практических занятий, составление конспектов; выполнение всех лабораторных работ, правильно оформленная работа. Ответы на все контрольные вопросы, удельный вес ошибок при контрольном тестировании - не более 20%.	зачтено
Поверхностное знание основного учебно-программного материала, допускающее принципиальные ошибки в ответах.Наличие пропущенных лабораторных (более 50 %) и неотработанных (не сданных) практических занятий, Ошибки в расчетах, неправильно оформленная работа, отсутствие ответов на вопросы, удельный вес ошибок при контрольном тестировании - более 30%.	не зачтено